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• Fundamental property of the nucleon

• Can test validity of approaches to nonperturbative QCD (e.g. models, lattice 
QCD calculations)

• Can be used to test details of perturbative QCD (factorization and evolution in 
a gluon-free sector)

• Can be used to put limits on couplings beyond Standard Model (tensor 
coupling)
see, e.g., Courtoy et al. 1503.06814
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with known results for specific cases in order to clarify
our nomenclature. Finally, some conclusions are drawn in
Sec. VI.

II. CROSS SECTION IN TERMS OF
STRUCTURE FUNCTIONS

A. Definitions

We consider the process

lðlÞ þ NðPÞ → lðl0Þ þ h1ðP1Þ þ h2ðP2Þ þ X; ð1Þ

where l denotes the beam lepton, N the nucleon target, and
h the produced hadron, and where four-momenta are given
in parentheses. We work in the one-photon exchange
approximation and neglect the lepton mass. We denote
by M the mass of the nucleon and by S its polarization.
The final hadrons have masses M1, M2 and momenta P1,
P2. We introduce the pair total momentum Ph ¼ P1 þ P2

and relative momentum R ¼ ðP1 − P2Þ=2. The invariant
mass of the pair is P2

h ¼ M2
h.

As usual we define q ¼ l − l0, where Q2 ¼ −q2 is the
hard scale of the process. We introduce the variables

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
;

zh ¼
P · Ph

P · q
; γ ¼ 2MxB

Q
: ð2Þ

The longitudinal polarization factor for the beam will be
denoted λe and α is the fine structure constant.
Of particular relevance for our discussions are the angles

involved in the process. Two different sets of transverse
projections are usually taken into consideration. In fact,
we can define two different transverse planes: the first is
perpendicular to ðP; qÞ, and the projection of a generic
4-vector V onto it will be denoted by V⊥; the second one is
perpendicular to ðP;PhÞ and the projection is indicated by
VT . The corresponding projection operators, up to terms of
order M4=Q4, turn out to be1

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ
þ γ2

1þ γ2

!
qμqν

Q2
−
PμPν

M2

"
; ð3Þ

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð4Þ

and

gμνT ¼ gμν −
2xB
Q2zh

ðPμPν
h þ Pμ

hP
νÞ

þM2
hγ

2

Q2z2h

!
PμPν

M2
þ Pμ

hP
ν
h

M2
h

"
; ð5Þ

ϵμνT ¼ ϵμνρσ
PρPhσ

P · Ph
: ð6Þ

We define the azimuthal angles [1,28]

cosϕh ¼ −
lμPhνg

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; sinϕh ¼ −
lμPhνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; ð7Þ

where lμ⊥ ¼ gμν⊥ lν and Pμ
h⊥ ¼ gμν⊥ Phν. The azimuthal angle

of the spin vector, ϕS, is defined in analogy to ϕh, with Ph
replaced by S.
For dihadron fragmentation functions, we need to

introduce one more azimuthal angle. We first introduce
the vector RT, i.e., the component of R perpendicular to P
and Ph. Defining the invariant

ζh ¼
2R · P
Ph · P

; ð8Þ

neglecting terms of order M4=Q4 we can write

Rμ
T ¼ gμνT Rν ¼ Rμ −

ζh
2
Pμ
h þ xB

ζhM2
h − ðM2

1 −M2
2Þ

Q2zh
Pμ:

ð9Þ

However, the cross section will depend on the azimuthal
angle of RT measured in the plane perpendicular to ðP; qÞ.
Therefore, we need to use Eq. (7) replacing Ph with RT .
We will denote the azimuthal angle of RT in this frame by
ϕR⊥ . This choice is similar to what has been done in
Ref. [29], but here it has been realized in a covariant way.
In Appendix A, we compare our definition with other
noncovariant ones available in the literature, pointing out
the potential differences depending on the choice of the
reference frame.
It is anyway convenient to give the expression of the

involved angles in specific frames of reference. The
azimuthal angles are usually written in the target rest frame
(or in any frame reached from the target rest frame by a
boost along q)

ϕh ¼
ðq × lÞ · Ph

jðq × lÞ · Phj
arccos

ðq × lÞ · ðq × PhÞ
jq × ljjq × Phj

; ð10Þ

ϕR⊥ ¼ ðq × lÞ · RT

jðq × lÞ · RT j
arccos

ðq × lÞ · ðq × RTÞ
jq × ljjq × RT j

: ð11Þ

In the center-of-mass (cm) frame of the two hadrons, the
emission occurs back to back and the key variable is the
polar angle ϑ between the directions of the emission and of
Ph [22]. The variable ζh can be written in terms of the ϑ as
follows:1We use the convention ϵ0123 ¼ 1.

S. GLISKE, A. BACCHETTA, AND M. RADICI PHYSICAL REVIEW D 90, 114027 (2014)
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in parentheses. We work in the one-photon exchange
approximation and neglect the lepton mass. We denote
by M the mass of the nucleon and by S its polarization.
The final hadrons have masses M1, M2 and momenta P1,
P2. We introduce the pair total momentum Ph ¼ P1 þ P2

and relative momentum R ¼ ðP1 − P2Þ=2. The invariant
mass of the pair is P2

h ¼ M2
h.

As usual we define q ¼ l − l0, where Q2 ¼ −q2 is the
hard scale of the process. We introduce the variables

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
;

zh ¼
P · Ph

P · q
; γ ¼ 2MxB

Q
: ð2Þ

The longitudinal polarization factor for the beam will be
denoted λe and α is the fine structure constant.
Of particular relevance for our discussions are the angles

involved in the process. Two different sets of transverse
projections are usually taken into consideration. In fact,
we can define two different transverse planes: the first is
perpendicular to ðP; qÞ, and the projection of a generic
4-vector V onto it will be denoted by V⊥; the second one is
perpendicular to ðP;PhÞ and the projection is indicated by
VT . The corresponding projection operators, up to terms of
order M4=Q4, turn out to be1

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ
þ γ2

1þ γ2

!
qμqν

Q2
−
PμPν

M2

"
; ð3Þ

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð4Þ

and

gμνT ¼ gμν −
2xB
Q2zh

ðPμPν
h þ Pμ

hP
νÞ

þM2
hγ

2

Q2z2h

!
PμPν

M2
þ Pμ

hP
ν
h

M2
h

"
; ð5Þ

ϵμνT ¼ ϵμνρσ
PρPhσ

P · Ph
: ð6Þ

We define the azimuthal angles [1,28]

cosϕh ¼ −
lμPhνg

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; sinϕh ¼ −
lμPhνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; ð7Þ

where lμ⊥ ¼ gμν⊥ lν and Pμ
h⊥ ¼ gμν⊥ Phν. The azimuthal angle

of the spin vector, ϕS, is defined in analogy to ϕh, with Ph
replaced by S.
For dihadron fragmentation functions, we need to

introduce one more azimuthal angle. We first introduce
the vector RT, i.e., the component of R perpendicular to P
and Ph. Defining the invariant

ζh ¼
2R · P
Ph · P

; ð8Þ

neglecting terms of order M4=Q4 we can write

Rμ
T ¼ gμνT Rν ¼ Rμ −

ζh
2
Pμ
h þ xB

ζhM2
h − ðM2

1 −M2
2Þ

Q2zh
Pμ:

ð9Þ

However, the cross section will depend on the azimuthal
angle of RT measured in the plane perpendicular to ðP; qÞ.
Therefore, we need to use Eq. (7) replacing Ph with RT .
We will denote the azimuthal angle of RT in this frame by
ϕR⊥ . This choice is similar to what has been done in
Ref. [29], but here it has been realized in a covariant way.
In Appendix A, we compare our definition with other
noncovariant ones available in the literature, pointing out
the potential differences depending on the choice of the
reference frame.
It is anyway convenient to give the expression of the

involved angles in specific frames of reference. The
azimuthal angles are usually written in the target rest frame
(or in any frame reached from the target rest frame by a
boost along q)

ϕh ¼
ðq × lÞ · Ph

jðq × lÞ · Phj
arccos

ðq × lÞ · ðq × PhÞ
jq × ljjq × Phj

; ð10Þ

ϕR⊥ ¼ ðq × lÞ · RT

jðq × lÞ · RT j
arccos

ðq × lÞ · ðq × RTÞ
jq × ljjq × RT j

: ð11Þ

In the center-of-mass (cm) frame of the two hadrons, the
emission occurs back to back and the key variable is the
polar angle ϑ between the directions of the emission and of
Ph [22]. The variable ζh can be written in terms of the ϑ as
follows:1We use the convention ϵ0123 ¼ 1.
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Figure 1: Depiction of the azimuthal angles φR⊥ of the dihadron and φS of the component ST of
the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame.
Explicitly, φR⊥ ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | . Here,

RT = R − (R · P̂h)P̂h, with R ≡ (Pπ+ − Pπ−)/2, Ph ≡ Pπ+ + Pπ− , and P̂h ≡ Ph/ | Ph |,
thus RT is the component of Pπ+ orthogonal to Ph, and φR⊥ is the azimuthal angle of RT about
the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The
short dotted line is parallel to the direction of the virtual photon. Also included is a description of
the polar angle θ, which is evaluated in the center-of-momentum frame of the pion pair.

two chiral-odd naive-T-odd dihadron fragmentation function H!

1,q [20, 37].2 There are no

contributions to this amplitude at subleading twist (i.e., twist-3). Among the various con-

tributions to the fragmentation function H!

1,q are the interference H!,sp
1,q between the s- and

p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

2The superscript ! indicates that the fragmentation function does not survive integration over the

relative momentum of the hadron pair.
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with known results for specific cases in order to clarify
our nomenclature. Finally, some conclusions are drawn in
Sec. VI.

II. CROSS SECTION IN TERMS OF
STRUCTURE FUNCTIONS

A. Definitions

We consider the process

lðlÞ þ NðPÞ → lðl0Þ þ h1ðP1Þ þ h2ðP2Þ þ X; ð1Þ

where l denotes the beam lepton, N the nucleon target, and
h the produced hadron, and where four-momenta are given
in parentheses. We work in the one-photon exchange
approximation and neglect the lepton mass. We denote
by M the mass of the nucleon and by S its polarization.
The final hadrons have masses M1, M2 and momenta P1,
P2. We introduce the pair total momentum Ph ¼ P1 þ P2

and relative momentum R ¼ ðP1 − P2Þ=2. The invariant
mass of the pair is P2

h ¼ M2
h.

As usual we define q ¼ l − l0, where Q2 ¼ −q2 is the
hard scale of the process. We introduce the variables

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
;

zh ¼
P · Ph

P · q
; γ ¼ 2MxB

Q
: ð2Þ

The longitudinal polarization factor for the beam will be
denoted λe and α is the fine structure constant.
Of particular relevance for our discussions are the angles

involved in the process. Two different sets of transverse
projections are usually taken into consideration. In fact,
we can define two different transverse planes: the first is
perpendicular to ðP; qÞ, and the projection of a generic
4-vector V onto it will be denoted by V⊥; the second one is
perpendicular to ðP;PhÞ and the projection is indicated by
VT . The corresponding projection operators, up to terms of
order M4=Q4, turn out to be1

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ
þ γ2

1þ γ2

!
qμqν

Q2
−
PμPν

M2

"
; ð3Þ

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð4Þ

and

gμνT ¼ gμν −
2xB
Q2zh

ðPμPν
h þ Pμ

hP
νÞ

þM2
hγ

2

Q2z2h

!
PμPν

M2
þ Pμ

hP
ν
h

M2
h

"
; ð5Þ

ϵμνT ¼ ϵμνρσ
PρPhσ

P · Ph
: ð6Þ

We define the azimuthal angles [1,28]

cosϕh ¼ −
lμPhνg

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; sinϕh ¼ −
lμPhνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; ð7Þ

where lμ⊥ ¼ gμν⊥ lν and Pμ
h⊥ ¼ gμν⊥ Phν. The azimuthal angle

of the spin vector, ϕS, is defined in analogy to ϕh, with Ph
replaced by S.
For dihadron fragmentation functions, we need to

introduce one more azimuthal angle. We first introduce
the vector RT, i.e., the component of R perpendicular to P
and Ph. Defining the invariant

ζh ¼
2R · P
Ph · P

; ð8Þ

neglecting terms of order M4=Q4 we can write

Rμ
T ¼ gμνT Rν ¼ Rμ −

ζh
2
Pμ
h þ xB

ζhM2
h − ðM2

1 −M2
2Þ

Q2zh
Pμ:

ð9Þ

However, the cross section will depend on the azimuthal
angle of RT measured in the plane perpendicular to ðP; qÞ.
Therefore, we need to use Eq. (7) replacing Ph with RT .
We will denote the azimuthal angle of RT in this frame by
ϕR⊥ . This choice is similar to what has been done in
Ref. [29], but here it has been realized in a covariant way.
In Appendix A, we compare our definition with other
noncovariant ones available in the literature, pointing out
the potential differences depending on the choice of the
reference frame.
It is anyway convenient to give the expression of the

involved angles in specific frames of reference. The
azimuthal angles are usually written in the target rest frame
(or in any frame reached from the target rest frame by a
boost along q)

ϕh ¼
ðq × lÞ · Ph

jðq × lÞ · Phj
arccos

ðq × lÞ · ðq × PhÞ
jq × ljjq × Phj

; ð10Þ

ϕR⊥ ¼ ðq × lÞ · RT

jðq × lÞ · RT j
arccos

ðq × lÞ · ðq × RTÞ
jq × ljjq × RT j

: ð11Þ

In the center-of-mass (cm) frame of the two hadrons, the
emission occurs back to back and the key variable is the
polar angle ϑ between the directions of the emission and of
Ph [22]. The variable ζh can be written in terms of the ϑ as
follows:1We use the convention ϵ0123 ¼ 1.

S. GLISKE, A. BACCHETTA, AND M. RADICI PHYSICAL REVIEW D 90, 114027 (2014)

114027-2



Dihadron fragmentation functions

13

quark
h2

h1

Dq�h1h2
1 (z1, z2, R

2
T ) or

2RT

J
H
E
P
0
6
(
2
0
0
8
)
0
1
7

Pπ−

Pπ+

Ph

θ

Pπ−

π+π− CM
frame

RT

ST

Pπ+

Ph

φR⊥

P

φSq

k k′

Figure 1: Depiction of the azimuthal angles φR⊥ of the dihadron and φS of the component ST of
the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame.
Explicitly, φR⊥ ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | . Here,

RT = R − (R · P̂h)P̂h, with R ≡ (Pπ+ − Pπ−)/2, Ph ≡ Pπ+ + Pπ− , and P̂h ≡ Ph/ | Ph |,
thus RT is the component of Pπ+ orthogonal to Ph, and φR⊥ is the azimuthal angle of RT about
the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The
short dotted line is parallel to the direction of the virtual photon. Also included is a description of
the polar angle θ, which is evaluated in the center-of-momentum frame of the pion pair.

two chiral-odd naive-T-odd dihadron fragmentation function H!

1,q [20, 37].2 There are no

contributions to this amplitude at subleading twist (i.e., twist-3). Among the various con-

tributions to the fragmentation function H!

1,q are the interference H!,sp
1,q between the s- and

p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

2The superscript ! indicates that the fragmentation function does not survive integration over the

relative momentum of the hadron pair.
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Unpolarized DiFF

with known results for specific cases in order to clarify
our nomenclature. Finally, some conclusions are drawn in
Sec. VI.

II. CROSS SECTION IN TERMS OF
STRUCTURE FUNCTIONS

A. Definitions

We consider the process

lðlÞ þ NðPÞ → lðl0Þ þ h1ðP1Þ þ h2ðP2Þ þ X; ð1Þ

where l denotes the beam lepton, N the nucleon target, and
h the produced hadron, and where four-momenta are given
in parentheses. We work in the one-photon exchange
approximation and neglect the lepton mass. We denote
by M the mass of the nucleon and by S its polarization.
The final hadrons have masses M1, M2 and momenta P1,
P2. We introduce the pair total momentum Ph ¼ P1 þ P2

and relative momentum R ¼ ðP1 − P2Þ=2. The invariant
mass of the pair is P2

h ¼ M2
h.

As usual we define q ¼ l − l0, where Q2 ¼ −q2 is the
hard scale of the process. We introduce the variables

xB ¼ Q2

2P · q
; y ¼ P · q

P · l
;

zh ¼
P · Ph

P · q
; γ ¼ 2MxB

Q
: ð2Þ

The longitudinal polarization factor for the beam will be
denoted λe and α is the fine structure constant.
Of particular relevance for our discussions are the angles

involved in the process. Two different sets of transverse
projections are usually taken into consideration. In fact,
we can define two different transverse planes: the first is
perpendicular to ðP; qÞ, and the projection of a generic
4-vector V onto it will be denoted by V⊥; the second one is
perpendicular to ðP;PhÞ and the projection is indicated by
VT . The corresponding projection operators, up to terms of
order M4=Q4, turn out to be1

gμν⊥ ¼ gμν −
qμPν þ Pμqν

P · qð1þ γ2Þ
þ γ2

1þ γ2

!
qμqν

Q2
−
PμPν

M2

"
; ð3Þ

ϵμν⊥ ¼ ϵμνρσ
Pρqσ

P · q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð4Þ

and

gμνT ¼ gμν −
2xB
Q2zh

ðPμPν
h þ Pμ

hP
νÞ

þM2
hγ

2

Q2z2h

!
PμPν

M2
þ Pμ

hP
ν
h

M2
h

"
; ð5Þ

ϵμνT ¼ ϵμνρσ
PρPhσ

P · Ph
: ð6Þ

We define the azimuthal angles [1,28]

cosϕh ¼ −
lμPhνg

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; sinϕh ¼ −
lμPhνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥P
2
h⊥

p ; ð7Þ

where lμ⊥ ¼ gμν⊥ lν and Pμ
h⊥ ¼ gμν⊥ Phν. The azimuthal angle

of the spin vector, ϕS, is defined in analogy to ϕh, with Ph
replaced by S.
For dihadron fragmentation functions, we need to

introduce one more azimuthal angle. We first introduce
the vector RT, i.e., the component of R perpendicular to P
and Ph. Defining the invariant

ζh ¼
2R · P
Ph · P

; ð8Þ

neglecting terms of order M4=Q4 we can write

Rμ
T ¼ gμνT Rν ¼ Rμ −

ζh
2
Pμ
h þ xB

ζhM2
h − ðM2

1 −M2
2Þ

Q2zh
Pμ:

ð9Þ

However, the cross section will depend on the azimuthal
angle of RT measured in the plane perpendicular to ðP; qÞ.
Therefore, we need to use Eq. (7) replacing Ph with RT .
We will denote the azimuthal angle of RT in this frame by
ϕR⊥ . This choice is similar to what has been done in
Ref. [29], but here it has been realized in a covariant way.
In Appendix A, we compare our definition with other
noncovariant ones available in the literature, pointing out
the potential differences depending on the choice of the
reference frame.
It is anyway convenient to give the expression of the

involved angles in specific frames of reference. The
azimuthal angles are usually written in the target rest frame
(or in any frame reached from the target rest frame by a
boost along q)

ϕh ¼
ðq × lÞ · Ph

jðq × lÞ · Phj
arccos

ðq × lÞ · ðq × PhÞ
jq × ljjq × Phj

; ð10Þ

ϕR⊥ ¼ ðq × lÞ · RT

jðq × lÞ · RT j
arccos

ðq × lÞ · ðq × RTÞ
jq × ljjq × RT j

: ð11Þ

In the center-of-mass (cm) frame of the two hadrons, the
emission occurs back to back and the key variable is the
polar angle ϑ between the directions of the emission and of
Ph [22]. The variable ζh can be written in terms of the ϑ as
follows:1We use the convention ϵ0123 ¼ 1.
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Temporary solution: use output of event generators (PYTHIA)
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In this paper, we update the extraction of DiFFs from e+e� annihilation data by
performing the fit using the replica method [16]. Then, using the most recent SIDIS data for
charged pion pairs off a transversely polarized proton target by COMPASS [18] we extract
the transversity h1, thus obtaining the currently most realistic estimate of the uncertainties
involved.

In Sec. 2, we summarize the theoretical framework. In Sec. 3, we show the results of
our updated extraction of DiFFs. In Sec. 4, we comment the salient features of the re-
extracted valence components of transversity. Finally, in Sec. 5 we draw some conclusions
and mention possible extensions of our analysis.

2 Theoretical framework for two-hadron SIDIS

We consider the process `(k) + N(P ) ! `(k0
) + H1(P1) + H2(P2) + X, where ` denotes

the incoming lepton with four-momentum k, N the nucleon target with momentum P ,
mass M , and polarization S, H1 and H2 the produced unpolarized hadrons with momenta
P1, P2 and masses M1, M2, respectively. We define the total Ph = P1 + P2 and relative
R = (P1 � P2)/2 momenta of the pair, with P 2

h = M2
h ⌧ Q2

= �q2 � 0 and q = k � k0 the
space-like momentum transferred. As usual in SIDIS, we define also the following kinematic
invariants

x =

Q2

2P · q
, y =

P · q

P · k
, (2.1)

z =

P · Ph

P · q
⌘ z1 + z2 , ⇣ =

2R · P

Ph · P
=

z1 � z2

z
, (2.2)

where z1, z2, are the fractional energies carried by the two final hadrons.

P

P

Ph

�

P

CM
frame

RT

ST

P
Ph

�R

P

�Sq

k k�

1

2

2

CM frame
h  h1 2

1

Figure 1: Depiction of the azimuthal angles �R of the dihadron and �S of the compo-
nent ST of the target-polarization transverse to both the virtual-photon and target-
nucleon momenta q and P , respectively. Both angles are evaluated in the virtual-
photon-nucleon center-of-momentum frame. Here, RT = R � (R · P̂h)P̂h, i.e., RT is
the component of P1 orthogonal to Ph; up to subleading-twist corrections, it can be
identified with its projection on the plane perpendicular to q and containing also ST .
Thus, the angle �R is the azimuthal angle of RT about the virtual-photon direction.
Explicitly, �R ⌘ (q�k)·RT

|(q�k)·RT | arccos (q�k)·(q�RT )
|q�k||q�RT | and �S ⌘ (q�k)·ST

|(q�k)·ST | arccos (q�k)·(q�ST )
|q�k||q�ST | .

Also included is a description of the polar angle �, which is evaluated in the center-
of-momentum frame of the pion pair.

To leading-order, the cross section for two-particle inclusive DIS can be written

6

H1 H2 P1

P2

venerdì 4 maggio 2012

Figure 1. Kinematics of the two-hadron semi-inclusive production. The azimuthal angles �R

of the component RT of the dihadron relative momentum , and �S of the component ST of the
target polarization, transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively, are evaluated in the virtual-photon-nucleon center-of-momentum frame.

The kinematics of the process is depicted in Fig. 1 (see also Refs. [12, 16]). Of particular
relevance are the azimuthal angles of the R and S vectors. In fact, for DiFFs it is natural to
introduce the vector RT as the component of R perpendicular to P and Ph. However, the
cross section will depend on the azimuthal angles of both RT and S measured in the plane

– 2 –

Since M2
h ⌧ Q2, the hadron pair can be assumed to be produced mainly in relative s

or p waves, suggesting that the DiFFs can be conveniently expanded in partial waves. From
Eq. (2.4) and from the simple relation between ⇣ and cos ✓, DiFFs can be expanded in Leg-
endre polynomials in cos ✓ [20]. After averaging over cos ✓, only the term corresponding to
the unpolarized pair being created in a relative �L = 0 state survives in the D1 expansion,
while the interference with |�L| = 1 survives for H^

1 [20]. The simplification holds even if
the ✓ dependence in the acceptance is not complete but symmetric about ✓ = ⇡/2. Without
ambiguity, the two surviving terms will be identified with D1 and H^

1 , respectively.
By inserting the structure functions of Eqs. (2.6), (2.7) into the cross section (2.5), we

can define the single-spin asymmetry (SSA) [8, 20, 23]

ASIDIS(x, z, Mh;Q) = �B(y)

A(y)

|R|
Mh

P
q e2

q hq
1(x;Q

2
)H^ q

1 (z, Mh;Q2
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P
q e2

q f q
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2
)Dq

1(z, Mh;Q2
)

. (2.8)

For the specific case of ⇡+⇡� production, isospin symmetry and charge conjugation
suggest Dq

1 = Dq̄
1 and H^ q

1 = �H^ q̄
1 for q = u, d, s, and also H^u

1 = �H^ d
1 and H^ s

1 =

0 [14, 16, 23]. Moreover, from Eq. (2.8) the x-dependence of transversity is more conve-
niently studied by integrating the z- and Mh-dependences of DiFFs. So, in the analysis the
actual combinations used for the proton target are [16]
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(2.9)

and for the deuteron target are
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where hqv
1 ⌘ hq

1 � hq̄
1, f q+q̄

1 ⌘ f q
1 + f q̄

1 , q̃ = d, u, s if q = u, d, s, respectively (i.e. it reflects
isospin symmetry of strong interactions inside the deuteron), and

nq(Q
2
) =

Z
dz

Z
dMh Dq

1(z, Mh;Q
2
) , (2.11)

n"
q(Q

2
) =
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H^ q
1 (z, Mh;Q

2
) . (2.12)

Using Eqs. (2.9) and (2.10), we can extract the valence components of transversity from
the measurement of SSA Ap

SIDIS

and AD
SIDIS

, and from the knowledge of DiFFs through
Eqs. (2.11) and (2.12).

3 Extraction of Di-hadron Fragmentation Functions

The unknown DiFFs in Eqs. (2.11) and (2.12) can be extracted from the process e+e� !
(⇡+⇡�

)

jet

(⇡+⇡�
)

jet

X. Namely, an electron and a positron annihilate producing a virtual

– 4 –
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In this paper, we update the extraction of DiFFs from e+e� annihilation data by
performing the fit using the replica method [16]. Then, using the most recent SIDIS data for
charged pion pairs off a transversely polarized proton target by COMPASS [18] we extract
the transversity h1, thus obtaining the currently most realistic estimate of the uncertainties
involved.

In Sec. 2, we summarize the theoretical framework. In Sec. 3, we show the results of
our updated extraction of DiFFs. In Sec. 4, we comment the salient features of the re-
extracted valence components of transversity. Finally, in Sec. 5 we draw some conclusions
and mention possible extensions of our analysis.

2 Theoretical framework for two-hadron SIDIS

We consider the process `(k) + N(P ) ! `(k0
) + H1(P1) + H2(P2) + X, where ` denotes

the incoming lepton with four-momentum k, N the nucleon target with momentum P ,
mass M , and polarization S, H1 and H2 the produced unpolarized hadrons with momenta
P1, P2 and masses M1, M2, respectively. We define the total Ph = P1 + P2 and relative
R = (P1 � P2)/2 momenta of the pair, with P 2

h = M2
h ⌧ Q2

= �q2 � 0 and q = k � k0 the
space-like momentum transferred. As usual in SIDIS, we define also the following kinematic
invariants

x =

Q2

2P · q
, y =

P · q

P · k
, (2.1)

z =

P · Ph

P · q
⌘ z1 + z2 , ⇣ =

2R · P

Ph · P
=

z1 � z2

z
, (2.2)

where z1, z2, are the fractional energies carried by the two final hadrons.
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Figure 1: Depiction of the azimuthal angles �R of the dihadron and �S of the compo-
nent ST of the target-polarization transverse to both the virtual-photon and target-
nucleon momenta q and P , respectively. Both angles are evaluated in the virtual-
photon-nucleon center-of-momentum frame. Here, RT = R � (R · P̂h)P̂h, i.e., RT is
the component of P1 orthogonal to Ph; up to subleading-twist corrections, it can be
identified with its projection on the plane perpendicular to q and containing also ST .
Thus, the angle �R is the azimuthal angle of RT about the virtual-photon direction.
Explicitly, �R ⌘ (q�k)·RT

|(q�k)·RT | arccos (q�k)·(q�RT )
|q�k||q�RT | and �S ⌘ (q�k)·ST

|(q�k)·ST | arccos (q�k)·(q�ST )
|q�k||q�ST | .

Also included is a description of the polar angle �, which is evaluated in the center-
of-momentum frame of the pion pair.

To leading-order, the cross section for two-particle inclusive DIS can be written

6
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Figure 1. Kinematics of the two-hadron semi-inclusive production. The azimuthal angles �R

of the component RT of the dihadron relative momentum , and �S of the component ST of the
target polarization, transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively, are evaluated in the virtual-photon-nucleon center-of-momentum frame.

The kinematics of the process is depicted in Fig. 1 (see also Refs. [12, 16]). Of particular
relevance are the azimuthal angles of the R and S vectors. In fact, for DiFFs it is natural to
introduce the vector RT as the component of R perpendicular to P and Ph. However, the
cross section will depend on the azimuthal angles of both RT and S measured in the plane

– 2 –

Since M2
h ⌧ Q2, the hadron pair can be assumed to be produced mainly in relative s

or p waves, suggesting that the DiFFs can be conveniently expanded in partial waves. From
Eq. (2.4) and from the simple relation between ⇣ and cos ✓, DiFFs can be expanded in Leg-
endre polynomials in cos ✓ [20]. After averaging over cos ✓, only the term corresponding to
the unpolarized pair being created in a relative �L = 0 state survives in the D1 expansion,
while the interference with |�L| = 1 survives for H^

1 [20]. The simplification holds even if
the ✓ dependence in the acceptance is not complete but symmetric about ✓ = ⇡/2. Without
ambiguity, the two surviving terms will be identified with D1 and H^

1 , respectively.
By inserting the structure functions of Eqs. (2.6), (2.7) into the cross section (2.5), we

can define the single-spin asymmetry (SSA) [8, 20, 23]
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For the specific case of ⇡+⇡� production, isospin symmetry and charge conjugation
suggest Dq

1 = Dq̄
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1 =

0 [14, 16, 23]. Moreover, from Eq. (2.8) the x-dependence of transversity is more conve-
niently studied by integrating the z- and Mh-dependences of DiFFs. So, in the analysis the
actual combinations used for the proton target are [16]
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and for the deuteron target are
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1 , q̃ = d, u, s if q = u, d, s, respectively (i.e. it reflects
isospin symmetry of strong interactions inside the deuteron), and
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Using Eqs. (2.9) and (2.10), we can extract the valence components of transversity from
the measurement of SSA Ap

SIDIS

and AD
SIDIS

, and from the knowledge of DiFFs through
Eqs. (2.11) and (2.12).

3 Extraction of Di-hadron Fragmentation Functions

The unknown DiFFs in Eqs. (2.11) and (2.12) can be extracted from the process e+e� !
(⇡+⇡�

)

jet

(⇡+⇡�
)

jet

X. Namely, an electron and a positron annihilate producing a virtual
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4M2
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1 ¼ Gj2;−2i

1 ¼ −
jpT jjRj
4M2

h
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1;TT; ð69Þ

while for the chiral-odd function,

H⊥j0;0i
1 ¼ 1

4
H⊥s

1;OO þ 3

4
H⊥p

1;OO; ð70Þ

H⊥j1;0i
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1;OL; H⊥j2;0i
1 ¼ 1

2
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1;LL; ð71Þ

H⊥j1;1i
1 ¼ jRj
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1;OT; ð72Þ

H⊥j2;1i
1 ¼ jRj
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1 ¼ 1
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H⊥j2;2i
1 ¼ jRj

jpT j
H∢

1;TT; H⊥j2;−2i
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1;TT: ð74Þ

Using the above relations, one can then cross-check the
formulas listed in Secs. II and IV. There is consistency
between the published literature and the present work,
although in some case there are typographical errors (for a
detailed list, see Appendix B).

VI. CONCLUSION

In this paper, we have presented a slightly modified
definition of the fragmentation functions compared to, e.g.,
Ref. [24]. We have proposed a new partial wave expansion
for fragmentation functions, which allows a consistent
framework for fragmentation into final states of any
polarization.
This not only helps in the interpretation of cross section

moments, but also has the advantage that the two-hadron
SIDIS cross sections, at any twist, can be derived from
single-hadron SIDIS. Using this method, in this paper we
present for the first time the expression of the two-hadron
SIDIS cross section up to subleading twist, including the
dependence upon the transverse momentum of involved
particles.
The cross section has also been given in terms of structure

functions, and the resulting expressions have been cross-
checked with existing literature for specific cases.
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APPENDIX A: DEFINITION OF
AZIMUTHAL ANGLES

As explained in Sec. II A, the SIDIS cross section for
dihadron production depends also on the azimuthal angle
ϕR⊥ of the vector RT measured in the plane perpendicular to
ðP; qÞ, where RT is given by Eq. (9) and ϕR⊥ is defined by

cosϕR⊥ ¼ −
lμRTνg

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥R
2
T⊥

p ;

sinϕR⊥ ¼ −
lμRTνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥R
2
T⊥

p ; ðA1Þ

with lμ⊥ ¼ gμν⊥ lν and Rμ
T⊥ ¼ gμν⊥ RTν

.
Depending on the reference frame, the vector RT can

have a nonvanishing component along q, but gμν⊥ projects
out only its spatial components transverse to q. Hence,
in order to compare with other noncovariant definitions
we inspect in the following the expressions of only RT⊥ ¼
fRTx

; RTy
g.

The most natural choice of frame is the target rest frame
(TRF). There, from Eq. (9) we have

RT⊥jTRF ¼
z2P1T − z1P2T

z
þO

"
1

Q3

#
: ðA2Þ

The above result coincides (up to corrections of order
1=Q3) with the transverse spatial components of
R − PhR · Ph=P2

h, which is the definition of RT used in
the analysis of dihadron production from SIDIS data by the
HERMES Collaboration [29]. It is also equal, in the same
limit, to the definition used in Ref. [33], that has been
adopted in the analyses of dihadron production from SIDIS
data by the COMPASS Collaboration [34] and from eþe−

annihilation data by the Belle Collaboration [35].
If we boost all four-vectors to the so-called infinite

momentum frame (IMF), where the momentum of the
virtual photon is purely spacelike, our definition reduces to

RT⊥jIMF ¼
z2P1T − z1P2T

z
þO

"
1

Q2

#
; ðA3Þ

which again coincides with all other noncovariant defini-
tions, but now up to corrections of order 1=Q2. We find the
same result if we boost the four-vectors to the Breit frame
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Since M2
h ⌧ Q2, the hadron pair can be assumed to be produced mainly in relative s

or p waves, suggesting that the DiFFs can be conveniently expanded in partial waves. From
Eq. (2.4) and from the simple relation between ⇣ and cos ✓, DiFFs can be expanded in Leg-
endre polynomials in cos ✓ [20]. After averaging over cos ✓, only the term corresponding to
the unpolarized pair being created in a relative �L = 0 state survives in the D1 expansion,
while the interference with |�L| = 1 survives for H^

1 [20]. The simplification holds even if
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Figure 6. Histogram of the distribution of M = 100 �2/d.o.f. when minimizing Eq. (4.1) for
↵s(M2

Z) = 0.125 and in the rigid scenario. The solid curve corresponds to a Gaussian distribution
centered at the average of the M = 100 �2 values. The shaded area represents the 1� variance.
The normalization of the Gaussian distribution is adapted to the histogram profile.

above. The uncertainty bands show the result of the 68% of all fitting replicas in the rigid
scenario with ↵s(M2

Z) = 0.125. They are obtained by minimizing the error function in
Eq. (4.1) and by further rejecting the largest 16% and the lowest 16% of the M = 100

replicas’ values in each x point.
In Fig. 6, we show the histogram for the distribution of the M values of the �2/d.o.f

obtained by minimizing the error function in Eq. (4.1) for the rigid scenario with ↵s(M2
Z) =

0.125. For sake of illustration, we compare it with the solid line representing a Gaussian
distribution centered around the average 1.42 of the �2/d.o.f. values for this scenario. The
shaded area represents the 1� variance. The distribution is not peaked at 1 but around
1.4 because of the rigidity of the fitting model. When changing evolution parameter from
↵s(M2

Z) = 0.125 to ↵s(M2
Z) = 0.139, the salient features of the �2 distribution remain

substantially the same and the average �2/d.o.f. increases by less than 3%, as it can be
realized by inspecting Tab. 2.

�2/d.o.f. ↵s(M2
Z) = 0.125 ↵s(M2

Z) = 0.139

rigid 1.42 1.46
flexible 1.65 1.71

extraflexible 1.97 2.07

Table 2. The average �2/d.o.f. obtained by minimizing the error function in Eq. (4.1) for the three
different scenarios explored in the fitting function, and for the two values of ↵s in the evolution
code.

In Fig. 7, we show the up valence transversity, xhuv
1 , as a function of x at Q2

= 2.4

GeV2 in the flexible scenario. The brightest band in the background with dashed borders
is the 68% of all replicas from our previous extraction [16]. The light grey band in the
foreground with dot-dashed borders shows the 68% of all replicas obtained in this work
when using ↵s(M2

Z) = 0.139. The darkest band with solid borders is the result when
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FIG. 6: Our best fit results for the valence u and d quark transversity distributions at Q

2 = 2.4 GeV2 (left panel) and for
the lowest p? moment of the favoured and disfavoured Collins functions at Q

2 = 2.4 GeV2 (central panel) and at Q

2 = 112
GeV2 (right panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the
statistical uncertainty on these parameters, as explained in the text.
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FIG. 7: Comparison of our reference best fit results (red, solid lines) for the valence u and d quark transversity distributions
(left panel) and for the lowest p? moment of the favoured and disfavoured Collins functions (right panel), at Q

2 = 2.4 GeV2,
with those from our previous analysis [11] (blue, dashed lines).

kernel, similarly to what is done for the transversity function, as suggested in Refs. [42, 43]. The results we obtain
show a slight deterioration of the fit quality, with a global �2

d.o.f. increasing from 0.84 to 1.20. Although this is still
an acceptable result, one may wonder whether this is a genuine e↵ect of the chosen evolution model or, rather, a
byproduct of the functional form adopted for the Collins function parameterisation.

We have therefore exploited a di↵erent parameterisation based on a polynomial form. In principle, the polynomial
could be of any order. We have started by using an order zero polynomial, then increased it to order one and,
subsequently, to order two. In doing so, we have seen that the quality of the fit improves remarkably when going from
order zero to order one (i.e. from 2 to 4 free parameters) but it stops improving when further increasing to higher
orders. We therefore choose a first order polynomial form, which has the added advantage of depending on the same
number of free parameters as the standard parameterisation of Eqs. (11) and (12).

We consider generic combinations of fixed order Bernstein polynomials (see, for example, Ref. [44]) as they o↵er a
relatively straightforward way to keep track of the appropriate normalisation:

NC
i (z) = aiP01

(z) + biP11

(z) i = fav, dis (41)

where P
01

(z) = (1� z) and P
11

(z) = z are Bernstein polynomials of order one. Notice that by constraining the four
free parameters in such a way that �1  ai  +1 and �1  bi  +1, the Collins function automatically fulfils its
positivity bounds, as in the standard parameterisation. The Collins function will be globally modelled as shown in
Eqs. (6) and (8), with NC

fav

(z) and NC
dis

(z) as given in Eq. (41).
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
(b) Comparison of extracted transversity (solid lines and shaded region) at Q2 = 2.4 GeV2 with Pavia 2015 extraction [18]
(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with

Torino 2013
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arXiv:1505.05589

Anselmino et al., 
P.R.D87 (13) 094019
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FIG. 29. Comparison of tensor charge δq[0.0065,0.35] for u-quark and d-quark from this paper at 68% C.L. (Kang et al 2015)
and result from Ref. [18] (Radici et al 2015) at 68% C.L. Both results are at Q2 = 10 GeV2.
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FIG. 30. Comparison of tensor charge δq[0,1] for u-quark and d-quark in the whole region of x from this paper at 90% C.L.
(Kang et al 2015) at Q2 = 10 GeV2 and result from Ref. [18] (Radici et al 2015) at at 68% C.L. and Q2 = 1 GeV2, and Ref. [17]
at 95% C.L. standard and polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2.

respect to evolution effects that are included in phenomenological extractions. It also means that phenomenological
results of Ref. [17] and other extractions without TMD evolution are valid phenomenologically. One should remember,
of course, that TMD evolution is more complicated if compared to DGLAP evolution (even though formal solutions
are simpler in TMD case). The usage of non perturbative kernels make it very important to actually demonstrate
that the proper evolution is indeed exhibited by the experimental data. Once correct evolution and non perturbative
Sudakov factor are established the results of Ref. [17] should be improved by utilizing the appropriate TMD evolution
that we have formulated in this paper.
In Fig. 31 we compare tensor charge δq[0,1] for u and d-quarks from this paper at 90% C.L. at Q2 = 10 GeV2

and results from various model estimates of Refs. [112–116]. One can see that our results are close to results of
Ref. [113] that actually used the approximate mass degeneracy of the light axial vector mesons (a1(1260), b1(1235)
and h1(1170)) and pole dominance to calculate the tensor charge. DSE calculations of tensor charge of Ref. [112] are
also close to our results.
Finally we present our estimates for the isovector nucleon tensor charge gT = δu − δd:

gT = +0.61+0.26
−0.51 , (155)

at 90% C.L. and

gT = +0.61+0.15
−0.25 , (156)

at 68% C.L.at Q2 = 10 GeV2. This result can be compared to lattice QCD calculations.
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FIG. 30. Comparison of tensor charge δq[0,1] for u-quark and d-quark in the whole region of x from this paper at 90% C.L.
(Kang et al 2015) at Q2 = 10 GeV2 and result from Ref. [18] (Radici et al 2015) at at 68% C.L. and Q2 = 1 GeV2, and Ref. [17]
at 95% C.L. standard and polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2.
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also close to our results.
Finally we present our estimates for the isovector nucleon tensor charge gT = δu − δd:

gT = +0.61+0.26
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at 68% C.L.at Q2 = 10 GeV2. This result can be compared to lattice QCD calculations.
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FIG. 32. Comparison of the isovector nucleon tensor charge gT from this paper at 68% C.L. (Kang et al 2015) at Q2 = 10
GeV2 and result from Ref. [18] (Radici et al 2015) at 68% CL and Q2 = 4 GeV2, and Ref. [17] at 95% CL standard and
polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2. Other points are lattice computation at Q2 = 4 GeV2 of Bali et al
Ref. [117], Gupta et al Ref. [118], Green et al Ref. [119], Aoki et al Ref. [127], Bhattacharya et al ref. [120], Gockeler et al
Ref. [121]. Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [112].

processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ! 10.6 (GeV). The associated scale evolution
effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [107]
and the planned Electron Ion Collider [4, 108, 109].
Third, the quark transversity distributions from our analysis are comparable to previous determinations, including

the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. We hope the data will become available soon, and can be included into the
global fit in the near future. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the
data on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.

isovector tensor charge
gT = δu − δd

Q2 = 4 GeV2

Q2 = 10

｛
｛

Q2 = 0.8

DSE
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FIG. 3: Kinematic coverage in x and Q2 of the polarized inclusive DIS data sets used in the JAM15

analysis. The boundaries corresponding to fixed W 2 = M2 + Q2(1 � x)/x equal to 4 GeV2 (solid

curve) and 10 GeV2 (dashed curve) are indicated.

electron beam to measure the double spin asymmetry Ak in Eq. (3). A first round

of publications [12, 13] from this experiment focused on the results from the lowest

(1.6 GeV) and highest (5.8 GeV) beam energies. In the meantime, the complete data

set (including data with 2.5 and 4.2 GeV beam energy) has been analyzed, including

numerous improvements in the procedures used to correct for backgrounds, beam and

target polarization, electromagnetic radiative corrections, and kinematic reconstruc-

tion. The final results from eg1b for the deuteron have been published [16] and the

results for the proton (used in the present analysis) will be published shortly [14]. Due

to the wide range in beam energies and running conditions, eg1b covers the largest

range in x and Q2 of any experiment at Je↵erson Lab.

• eg1-dvcs As the last spin structure function measurement with CLAS in the 6 GeV

era of Je↵erson Lab, experiment eg1-dvcs ran in 2009 with a significantly improved

polarized target (14NH3 and 14ND3 polarized along the beam direction) at the highest

beam energy (5.8 � 6 GeV) available at the time. This experiment di↵ers from eg1b

chiefly due to its much higher integrated luminosity and a significantly larger minimum

22

2500 points
1800 points excluding g2-related measurements
500 points excluding g2-related and JLab

Sato, Melnitchouk, Kuhn, Ethier, Accardi, arXiv:1601.07782

http://arxiv.org/abs/arXiv:1601.07782
http://arxiv.org/abs/arXiv:1601.07782
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• Extraction of transversity from dihadron fragmentation function is feasible 

• Complementary to single-hadron observables (products vs. convolutions, 
collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)

• Important cross check of TMD approach

• Need of unpolarized data (e+e-, pp collisions, SIDIS)

• Need of data from high x (JLab) and low x (EIC)

• Need different hadron pairs (COMPASS)

• Need of polarized pp collisions (STAR) → see next talk


